KernelCAD Documentation

DInsight Home
Skip Navigation Links.
Start page
Quick Start
Installation
Overview of the software
What is new
Collapse KernelCAD ModelsKernelCAD Models
Collapse KernelCAD ComponentsKernelCAD Components
KernelCAD Control
KernelCAD .NET Control
Methods and Properties
Menu
Model Explorer
Birds Eye View
Programming
Direct User Access
Direct Operations
Interface Queries
Printing Support
Data Types
Modes of KernelCAD Control
DIObjectGenerator class
Properties
FlatObjectArray Poperty
Context
64 bit development
Dual Mode
Initialisation Context
Overlay Editor
Memory Management
Input validation
Collapse Advanced functionalityAdvanced functionality
Collapse InterfacesInterfaces
Alphabetical list
I3DGrid
I3DBugger
I3Dpt
IAxiBase
IAxis
IBoolSection
IBoolSectionEx
IBoundary
IColor
IConstraint
IData
IDiffSurface_KC
IDIFont
IDraw
IDrawUtil
IDraw2
IElem
IElement
IKCLine
ILightSource
ILocation
ILocationEx
IMaterial
IMetrics
IMetrics2
IModel
IModel2
IModelEx
IPatch
IKCPathCollisionDetector
IProfiles
IPropertyArray
IPropertyArray2
IStdShape
IStrip
ISurface
IText
ITexture
ITransform
IUnknown
Collapse Open Cascade TechnologyOpen Cascade Technology
Collapse DataData
Collapse MovementMovement
Collapse FramesFrames
Collapse Oriented ObjectsOriented Objects
Collapse SectionsSections
Collapse GeneralGeneral
Collapse Topological InterfacesTopological Interfaces
Collapse Viewing InterfacesViewing Interfaces
Collapse Lines And CurvesLines And Curves
Collapse Symmetry InterfacesSymmetry Interfaces
Collapse Clipping plane interfacesClipping plane interfaces
Collapse AlgorithmsAlgorithms
Collapse 2D Geometry2D Geometry
Collapse Programming Samples and TutorialsProgramming Samples and Tutorials
Collapse OverviewOverview
Collapse DeploymentDeployment
Collapse .NET Samples.NET Samples
Collapse C++ SamplesC++ Samples
Collapse Visual Basic SamplesVisual Basic Samples
Collapse Delphi SamplesDelphi Samples
Collapse 3D Debugger3D Debugger
Collapse DeploymentDeployment
Licensing
Model Viewer
Open C++ Source
Technical Support
Skip Navigation LinksHome Page > KernelCAD Components > Interfaces > Open Cascade Technology > GP > IKO_gp_Ax3
IKO_gp_Ax3

IKO_gp_Ax3 Interface

Describes a coordinate system in 3D space. Unlike a gp_Ax2 coordinate system, a gp_Ax3 can be right-handed ("direct sense") or left-handed ("indirect sense"). A coordinate system is defined by: its origin (also referred to as its "Location point"), and three orthogonal unit vectors, termed the "X
Direction", the "Y Direction" and the "Direction" (also referred to as the "main Direction"). The "Direction" of the coordinate system is called its "main Direction" because whenever this unit vector is modified, the "X Direction" and the "Y Direction" are recomputed. However, when we modify either the "X
Direction" or the "Y Direction", "Direction" is not modified. "Direction" is also the "Z Direction". The "main Direction" is always parallel to the cross product of its "X Direction" and "Y Direction". If the coordinate system is right-handed, it satisfies the equation: "main Direction" = "X Direction" ^ "Y Direction" and if it is left-handed, it satisfies the equation: "main Direction" = -"X Direction" ^ "Y Direction" A coordinate system is used: to describe geometric entities, in particular to position them. The local coordinate system of a geometric entity serves the same purpose as the STEP function "axis placement three axes", or to define geometric transformations. Note: We refer to the "X Axis", "Y Axis" and "Z Axis", respectively, as the axes having: the origin of the coordinate system as their origin, and the unit vectors "X Direction", "Y Direction" and "main Direction", respectively, as their unit vectors. The "Z Axis" is also the "main Axis". gp_Ax2 is used to define a coordinate system that must be always right-handed.

ReverseAxis
Direct

HRESULT ReverseAxis(int axis)

Parameters

axis -[in] 0-based index of an axis

Remarks:

Reverses direction of the axis


HRESULT Direct(VARIANT_BOOL* res)

res - [out,retval] - Returned orientation of this

Returns True if the coordinate system is right-handed. i.e. XDirection().Crossed(YDirection()).Dot(Direction()) > 0